当前位置:首页 » 知识集锦 » 社会网络分析法的原始数据形式是什么样的

社会网络分析法的原始数据形式是什么样的

发布时间: 2022-05-25 10:11:08

① 什么是社会网络分析法

社会网络分析方法是由社会学家根据数学方法、图论等发展起来的定量分析方法。

社会网络分析是对社会网络的关系结构以及属性加以分析的一套规范和方法。它又被称为结构分析法(structural analysis)

社会网络分析不仅是对关系和结构加以分析的技术,还是一种理论方法--结构思想。

社会网络分析是社会学领域比较成熟的分析方法,该方法可以解决一些社会学的问题。

社会网络要素:

①行动者,在社会网络中用节点表示;

②关系,在社会网络中用剑线表示,关系的内容可能是友谊、借贷或是沟通,其关系可以是单向或双方,且存在关系强度的差异,关系不同即构成不同的网络

社会网络分析的原理:

  1. 关系纽带经常是不对称地相互作用着的,在内容和强度上都有所不同

  2. 关系纽带间接或直接地把网络成员连接在一起;故必须在更大的网络结构背景中进行分析

  3. 社会纽带结构产生了非随机的网络,因而形成了网络群(network clusters)、网络界限和交叉关联

  4. 交叉关联把网络群以及个体联系在一起

  5. 不对称的纽带和复杂网络使稀缺资源的分配不平等

  6. 网络产生了以获取稀缺资源为目的的合作和竞争行为

社会网络分析方法--数学表达式:

①图论法和矩阵法,这是社会网络分析最基本的方法

②二方关系图和三方关系图

③图的矩阵表达

④反应行动者的关系图。通过网络密度、结点度、割点、桥等指标进行具体测量距离,行动者之间的距离越小,意味着他们之间的联系越密切,交流互动越充分。由此可以了解一个网络中行动者之间的分化与差异

② 社会网络分析方法

社会网络分析方法是由社会学家根据数学方法﹑图论等发展起来的定量分析方法,近年来,该方法在职业流动、城市化对个体幸福的影响和经济体系、国际贸易等领域广泛应用,并发挥了重要作用。

社会网络分析是社会学领域比较成熟的分析方法,社会学家们利用它可以比较得心应手地来解释一些社会学问题。许多学科的专家如经济学、管理学等领域的学者们在新经济时代——知识经济时代,面临许多挑战时,开始考虑借鉴其他学科的研究方法,社会网络分析就是其中的一种。

网络指的是各种关联,而社会网络即可简单地称为社会关系所构成的结构。社会网络分析问题起源于物理学中的适应性网络,通过研究网络关系,有助于把个体间关系、“微观”网络与大规模的社会系统的“宏观”结构结合起来,通过数学方法﹑图论等定量分析方法,是20世纪70年代以来在社会学、心理学、人类学、数学、通信科学等领域逐步发展起来的一个的研究分支。

所以,从社会网络的角度出发,人在社会环境中的相互作用可以表达为基于关系的一种模式或规则,而基于这种关系的有规律模式反映了社会结构,这种结构的量化分析是社会网络分析的出发点。

社会网络分析不仅仅是一种工具,更是一种关系论的思维方式。可以利用来解释一些社会学、经济学、管理学等领域问题。

③ 怎么解释社会网络的概念

社会网络(socialnetwork)是一种基于“网络”(节点之间的相互连接)而非“群体”(明确的边界和秩序)的社会组织形式,也是西方社会学从1960年代兴起的一种分析视角。随着工业化、城市化的进行和新的通讯技术的兴起,社会呈现越来越网络化的趋势,发生“社会网络革命”(socialnetworkrevolution),与移动革命(mobilerevolution)、互联网革命(internetrevolution)并列为新时期影响人类社会的三大革命. 社会网络是指社会个体成员之间因为互动而形成的相对稳定的关系体系,社会网络关注的是人们之间的互动和联系, 社会互动会影响人们的社会行为。社会网络是由许多 节点构成的一种社会结构,节点通常是指个人或组织,社会网络代表各种 社会关系,经由这些社会关系,把从偶然相识的泛泛之交到紧密结合的家庭关系的各种人们或组织串连起来。社会关系包括朋友关系、同学关系、生意伙伴关系、种族信仰关系等。社会网络作为一种社会学视角发端于德国社会学家齐美尔(Georg Simmel, 1858-1918),并在 1960 年代随着冷战的开始和西方普遍出现的社会动乱开始在西方广为发展。社会网络分析不把人看作是由个体规范或者独立群体的共同活动所驱动,相反它关注人们的联系如何影响他们行动中的可能性和限制。一个多世纪以来,社会科学家都在使用“社会网络”这一隐喻表示不同尺度上的各种复杂社会关系。

④ 数据分析方法五种的介绍

《数据分析方法五种》是2011年格致出版社出版的图书,作者是尤恩·苏尔李。该书从基平设计的分析入手,介绍了分析复杂调查数据的传统方法,阐述了如何处理社会科学研究中的缺失数据。同时对跨学科的社会网络分析法进行了说明,并详细介绍了因子分析法。最后,从基于模型的角度,以举例的形式详细解释了基于行动者的模型的基本原理,讨论了相关软件的使用,填补了该领域的空白。

⑤ 社会网络分析的内容简介

本书的内容结构是,除前言外共分为八章,分别介绍社会网络分析的基本原理和理论、社会网络资料类型和收集方法、网络分析的各种技术与方法、社会网络分析的应用等内容。
第一章
首先追溯了西方社会网络分析的思想渊源,对国内外的研究状况做了系统回顾,介绍了社会网络分析的一些新进展。社会网络分析有不同的学科发展背景,其发展也经历了不同的阶段。我们通过回顾社会网络分析思想与方法在西方的发展,梳理出其中的主要线索和问题,并结合国内的研究状况进行探讨,目的在于强调更好地借鉴已有的成果,加强对社会网络分析的认识和应用。
第二章
系统说明了社会网络分析的基本原理。社会网络分析作为一种独立的社会研究方法,已形成了自己的理论基础和方法论原则。通过这些方面我们可以认识社会网络分析方法的特征及其独特之处。在本章中我们在说明社会网络分析概念的基础上,具体介绍了社会网络分析的方法论原理和研究程序。
第三章
主要说明社会网络分析所用的数据资料具有自己的类型与特征,它是一组反映行动者关系的信息。社会网络资料首先是关于社会关系的数据信息,简称关系数据。关系数据不同于属性数据,不仅其本质内容不同,其表达形式也不同。本章在介绍了社会网络资料的概念和类型基础上,结合研究设计具体说明了社会网络的测量及其收集方法。
第四章
主要介绍社会网络分析的研究技术与方法。社会网络最基本的数学表达形式是图论法和矩阵法。图论法是以线和点的形式来表示行动者及其关系的一种方法。用社群图可表示社会关系的结构、特征等属性。矩阵法是把社会网络中的每一个结点或关系分别按行和列的方式排列即可形成网络矩阵,包括邻接矩阵、关联矩阵等。矩阵法可以对群体关系进行具体分析。
第五章
是关于社会网络的中心度分析。中心度是我们认识社会网络中行动者位置及其关系的重要概念,具有广泛的应用性。本章首先介绍了中心度、中心势概念,重点说明了结点中心度、紧密中心度、间距中心度及其测量方法。最后又对社会网络中与等级密切相关的权力和声望作了分析。网络中的声望不同于一般意义的社会声望概念,这里主要说明了接近度声望概念及其测量。
第六章
是关于社会网络分析中的子群研究。构成社会网络的基本元素就是行动者及其群体,社会中存在着各种各样的子群,它们相互结合形成了复杂的社会结构。本章首先从社会群体、子群概念出发,说明各种团聚性的子群及其测量方法,包括“团伙”、n-团伙、n-宗派、k-丛等,最后分析隶属性群体。
第七章
是关于网络中的位置和角色的分析。在社会结构分析中,位置和角色是两个重要的概念。本章在简要介绍了网络分析的位置和角色概念之后,主要说明了结构等价性、自同构等价性和正则等价性及其不同的测量方法,最后一节简要介绍了关系代数法和统计模型法。位置和角色分析是目前社会网络分析中数量化分析程度最高的方面,已应用和发展出了许多不同的数学分析方法。本章结合例子简要介绍了聚类法、统计模型法等。这些分析方法现在都可借助于有关的分析软件来应用。
第八章
讨论了社会网络分析的一些应用。社会网络分析具有非常广泛的应用,其应用领域已远远超出了社会学和人类学的传统范围,如小群体关系、社会支持网等,而且扩展到了人文社会科学甚至工程技术科学的诸多领域。但本书只是简要分析了与社会网络分析密切相关的社会资本研究以及体现中国社会结构特征的“关系”研究。
本书最后在附录中介绍了社会网络分析软件包的应用,重点说明了Pajek 的内容及使用方法。附录中还附有两个不同的各具代表性的《社会网络分析》教学大纲,供读者参考比较。

⑥ 什么是社会网络

社会网络(socialnetwork)是一种基于“网络”(节点之间的相互连接)而非“群体”(明确的边界和秩序)的社会组织形式,也是西方社会学从1960年代兴起的一种分析视角。随着工业化、城市化的进行和新的通讯技术的兴起,社会呈现越来越网络化的趋势,发生“社会网络革命”(socialnetworkrevolution),与移动革命(mobilerevolution)、互联网革命(internetrevolution)并列为新时期影响人类社会的三大革命.
社会网络是指社会个体成员之间因为互动而形成的相对稳定的关系体系,社会网络关注的是人们之间的互动和联系,社会互动会影响人们的社会行为。
社会网络是由许多节点构成的一种社会结构,节点通常是指个人或组织,社会网络代表各种社会关系,经由这些社会关系,把从偶然相识的泛泛之交到紧密结合的家庭关系的各种人们或组织串连起来。社会关系包括朋友关系、同学关系、生意伙伴关系、种族信仰关系等。
社会网络分析是社会科学领域的叫法。类似的东西在物理和计算机领域叫复杂网络。在数学领域叫做图论。也有一些学者叫网络科学。基本的东西都类似,但关注的点不同。就和一个男人有时是爸爸,有时是儿子,有时是孙子。
最早的溯源可以归到哥尼斯堡七桥问题。莫雷诺在上世纪初开始将可视化和类似的网络分析技术应用在分析社会现象上,比如女生的午餐关系。之后生物领域和社会领域分别独立发展出比较完善的分析技术。集大成者是Harvard的HarrisonWhite,许多之后著名的学者都是他的徒子徒孙。
很难说SocialNetworkAnalysis是一门特定的学科。更多的应用是作为一种研究方法,有时候也会作为一种研究视角(perspective)。当然,也产生了一些中层的理论(theory),比较常见的是Granovetter的弱联系理论,Burt的结构洞理论,Watts的小世界模型,Barabasi的PowerLaw。
之前的社会科学往往关注个体(或者行动者,如企业、个人)的特性,而忽略个体之间的关系。而社会网络的研究正是研究关系的方法、视角。最大的特征在于考虑了个体之间的互相依赖,更接近于现实社会。将这些关系用如题头所示的图片展示出来,可以直观的看到各个行动者在网络中的位置和网络整体结构。

⑦ 社会网络分析法的介绍

《社会网络分析法》是2007年重庆大学出版社出版的图书,作者是斯科特。社会是一个内由容多种多样的关系构成的巨大网络。如何研究关系?视角当然多种多样,既可以像林语堂的小说中描述的那样对关系进行细致的刻画,又可以像黄光国等社会心理学家那样对人情、面子和关系网进行质的描述,更可以用社会网络分析法对关系进行量化的表征,从而揭示关系的结构,解释一定的社会现象。社会网络分析的意义在于,它可以对各种关系进行精确的量化分析,从而为某种中层理论的构建和实证命题的检验提供量化的工具,甚至可以建立“宏观和微观”之间的桥梁。本书就像一本手册,引导读者进入社会网络分析的研究领域。它既适用于社会网络分析的初学者,也适用于对社会网络分析有所了解的人士。

⑧ 如何统计和分析利用网络大数据

如何统计和分析利用网络大数据?
大数据给互联网带来的是空前的信息大爆炸,它不仅改变了互联网的数据应用模式,还将深深影响着人们的生产生活。深处在大数据时代中,人们认识到大数据已经将数据分析的认识从“向后分析”变成“向前分析”,改变了人们的思维模式,但同时大数据也向我们提出了数据采集、分析和使用等难题。在解决了这些难题的同时,也意味着大数据开始向纵深方向发展。
一、数据统计分析的内涵
近年来,包括互联网、物联网、云计算等信息技术在内的IT通信业迅速发展,数据的快速增长成了许多行业共同面对的严峻挑战和宝贵机遇,因此现代信息社会已经进入了大数据时代。事实上,大数据改变的不只是人们的日常生活和工作模式、企业运作和经营模式,甚至还引起科学研究模式的根本性改变。一般意义上,大数据是指无法在一定时间内用常规机器和软硬件工具对其进行感知、获取、管理、处理和服务的数据集合。网络大数据是指“人、机、物”三元世界在网络空间中彼此交互与融合所产生并在互联网上可获得的大数据。
将数据应用到生活生产中,可以有效地帮助人们或企业对信息作出比较准确的判断,以便采取适当行动。数据分析是组织有目的地收集数据、分析数据,并使之成为信息的过程。也就是指个人或者企业为了解决生活生产中的决策或者营销等问题,运用分析方法对数据进行处理的过程。所谓的数据统计分析,就是运用统计学的方法对数据进行处理。在以往的市场调研工作中,数据统计分析能够帮助我们挖掘出数据中隐藏的信息,但是这种数据的分析是“向后分析”,分析的是已经发生过的事情。而在大数据中,数据的统计分析是“向前分析”,它具有预见性。
二、大数据的分析
1.可视化分析。
数据是结构化的,包括原始数据中的关系数据库,其数据就是半结构化的,譬如我们熟知的文本、图形、图像数据,同时也包括了网络的不同构型的数据。通过对各种数据的分析,就可以清晰的发现不同类型的知识结构和内容,包括反映表征的、带有普遍性的广义型知识;用于反映数据的汇聚模式或根据对象的属性区分其所属类别的特征型知识;差异和极端特例进行描述的差异型知识;反映一个事件和其他事件之间依赖或关联的关联型知识;根据当前历史和当前数据预测未来数据的预测型知识。当前已经出现了许多知识发现的新技术,其中之一就是可视化方法。数据可视化技术有3个鲜明的特点:第一,与用户的交互性强。用户不再是信息传播中的受者,还可以方便地以交互的方式管理和开发数据。第二,数据显示的多维性。在可视化的分析下,数据将每一维的值分类、排序、组合和显示,这样就可以看到表示对象或事件的数据的多个属性或变量。第三,最直观的可视性特点。数据可以用图像、曲线、二维图形、三维体和动画来显示,并可对其模式和相互关系进行可视化分析。
2.数据挖掘算法。
数据挖掘是指数据库中的知识发现,其历史可以追溯到1989年美国底特律市召开的第一届KDD国际学术会议上,而第一届知识发现和数据挖掘(DataMining,DM)国际学术会议是1995年加拿大召开的,会议上将数据库里存放的数据生动地比拟成矿床,从而“数据挖掘”这个名词很快就流传开来。数据挖掘的目的是在杂乱无章的数据库中,从大量数据中找到有用的、合适的数据,并将其隐含的、不为人知的潜在价值的信息揭示出来的过程。事实上,数据挖掘只是整个KDD过程中的一个步骤。
数据挖掘的定义没有统一的说法,其中“数据挖掘是一个从不完整的、不明确的、大量的并且包含噪声的具有很大随机性的实际应用数据中,提取出隐含其中、事先未被人们获知、却潜在有用的知识或模式的过程”是被广泛接受的定义。事实上,该定义中所包含的信息——大量真实的数据源包含着噪声;满足用户的需求的新知识;被理解接受的而且有效运用的知识;挖掘出的知识并不要求适用于所有领域,可以仅支持某个特定的应用发现问题。以上这些特点都表现了它对数据处理的作用,在有效处理海量且无序的数据时,还能够发现隐藏在这些数据中的有用的知识,最终为决策服务。从技术这个角度来说,数据挖掘就是利用一系列相关算法和技术从大量的数据中提取出为人们所需要的信息和知识,隐藏在数据背后的知识,可以以概念、模式、规律和规则等形式呈现出来。
3.预测性分析能力。
预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。大数据分析最终要实现的应用领域之一就是预测性分析,可视化分析和数据挖掘都是前期铺垫工作,只要在大数据中挖掘出信息的特点与联系,就可以建立科学的数据模型,通过模型带入新的数据,从而预测未来的数据。作为数据挖掘的一个子集,内存计算效率驱动预测分析,带来实时分析和洞察力,使实时事务数据流得到更快速的处理。实时事务的数据处理模式能够加强企业对信息的监控,也便于企业的业务管理和信息更新流通。此外,大数据的预测分析能力,能够帮助企业分析未来的数据信息,有效规避风险。在通过大数据的预测性分析之后,无论是个人还是企业,都可以比之前更好地理解和管理大数据。
尽管当前大数据的发展趋势良好,但网络大数据对于存储系统、传输系统和计算系统都提出了很多苛刻的要求,现有的数据中心技术很难满足网络大数据的需求。因此,科学技术的进步与发展对大数据的支持起着重要的作用,大数据的革命需要考虑对IT行业进行革命性的重构。网络大数据平台(包括计算平台、传输平台、存储平台等)是网络大数据技术链条中的瓶颈,特别是网络大数据的高速传输,需要革命性的新技术。此外,既然在大数据时代,任何数据都是有价值的,那么这些有价值的数据就成为了卖点,导致争夺和侵害的发生。事实上,只要有数据,就必然存在安全与隐私的问题。随着大数据时代的到来,网络数据的增多,使得个人数据面临着重大的风险和威胁,因此,网络需要制定更多合理的规定以保证网络环境的安全。

⑨ 数据分析方法5种的内容简介

统计方法与应用问题》以及《基于行动者的模型》。《数据分析方法5种》主要介绍社会学研究方法之一,即数据分析方法。该书涵盖的是社会科学中技术性非常强的内容,前四种小册子从基于设计的分析入手,介绍了分析复杂调查数据的传统方法,阐述了如何处理社会科学研究中的缺失数据,同时对跨学科的社会网络分析法进行了说明,并详细介绍了因子分析法。最后,从基于模型的角度,以举例的形式详细解释了基于行动者的模型的基本原理,讨论了相关软件的使用,填补了该领域的空白。

热点内容
司法李永健 发布:2025-05-17 17:19:10 浏览:92
公司规章制度及政策 发布:2025-05-17 17:19:02 浏览:628
公司现场场地规章制度 发布:2025-05-17 17:09:56 浏览:949
工会通过企业规章制度的流程图 发布:2025-05-17 17:09:08 浏览:422
法人变更后前期的法律责任怎么处理 发布:2025-05-17 16:59:23 浏览:120
简答题经济法的调整对象 发布:2025-05-17 16:52:26 浏览:350
村居法律顾问在基层值班解答咨询 发布:2025-05-17 16:44:57 浏览:713
公司规章简单版 发布:2025-05-17 16:44:16 浏览:524
合同法对人防车位 发布:2025-05-17 16:29:18 浏览:193
行事诉讼法第八十九条 发布:2025-05-17 16:27:09 浏览:371