行政法悖论
① 求几个经典的悖论
1、生日问题是指,如果在一个房间要多少人,则两个人的生日相同的概率要大于50%? 答案是23人。 这就意味着在一个典型的标准小学班级(30人)中,存在两人生日相同的可能性更高。对于60或者更多的人,这种概率要大于99%。
从引起逻辑矛盾的角度来说生日悖论并不是一种悖论,从这个数学事实与一般直觉相抵触的意义上,它才称得上是一个悖论。大多数人会认为,23人中有2人生日相同的概率应该远远小于50%。计算与此相关的概率被称为生日问题,在这个问题之后的数学理论已被用于设计著名的密码攻击方法:生日攻击。
2、唐吉诃德悖论是指记载在唐吉诃德小说中的一个涉及悖论的故事。桑丘·潘萨在他治理的岛上颁布一条法例,规定过桥的旅客必需诚实地表示自己的目的,否则就要接受绞刑。有一个旅客在见到桥上的告示后,宣称自己过桥是要接受绞刑的。
这使执法者感到为难:如果旅客的言论为真,则他应被释放并不得受绞刑,但如此一来旅客言论即变为假。如其言论为假,则他会被绞死,但如此一来其言论即变为真。该旅客被带到桑丘面前,而桑丘最后把他释放。
3、说谎者悖论,在哲学和逻辑学中,古典的说谎者悖论是指一个说谎者声称自己正在说谎:例如,声称:“我在说谎”或者“我所说的皆为假”。如果他确实在说谎,那么他所说的就是真的,但如果他所说的就是真的,那么他就是在说谎。
在“这个语句正在说谎”的悖论中,为了强化悖论,使悖论更经得起严格的逻辑分析,“说谎”的概念往往被“真假”的概念所取代,仅仅保留“说谎者”这一名称来指涉关于古典二值逻辑会推导出矛盾的悖论。
如果“这个语句为假”为真,那么这个语句为假,但是如果这个语句声称它为假,且它为假,那么它一定为真,如此一来悖论于焉成形。
4、祖父悖论是一种时间旅行的悖论,科幻故事中常见的主题。最先由法国科幻小说作家赫内·巴赫札维勒(René Barjavel)在他1943年的小说《不小心的旅游者》(Le Voyageur Imprudent)中提出。情景如下:
假如你回到过去,在自己父亲出生前把自己的祖父母杀死,但此举动会产生一矛盾的情况:你回到过去杀了你年轻的祖父,祖父死了就没有父亲,没有父亲也不会有你,那么是谁杀了祖父呢? 或者看作:你的存在表示,祖父没有因你而死,那你何以杀死祖父?
5、小城里的理发师放出豪言:他只为,而且一定要为,城里所有不为自己刮胡子的人刮胡子。但问题是:理发师该为自己刮胡子吗?如果他为自己刮胡子,那么按照他的豪言“只为城里所有不为自己刮胡子的人刮胡子”他不应该为自己刮胡子;但如果他不为自己刮胡子,同样按照他的豪言“一定要为城里所有不为自己刮胡子的人刮胡子”他又应该为自己刮胡子。
② 法律的二律悖论
自由不是没有限度的。如果你的行为不为大多数人所接受,就应该限制。
宪法的基本原则:基本人权 人民主权 法治 分权制衡
通过限制一少部分人的权利来保证大多数人的权利,这是可以的。
③ 如何理解美国宪法解释中的反多数悖论现象
1、根据美国宪法,立法(国会)、行政(总统)和司法(联邦最高法院)三权是彼此独立、互相制衡的。而且从1803年起,联郑最高法院便具有司法审查权,即对宪法拥有最终解释权。这样,它就有权监督立法权、财权、人权、军权、治安权、外交权等大权在握的国会和总统,裁定包括国会在内的各级立法部门通过的法律、包括总统在内的各级行政当局的政策行为是否合乎宪法的规定,判决哪些法律或政策违宪。而这些裁定和判决,是国会和总统必须遵守也得到遵守的。所以在美国不存在凌驾于宪法之上的绝对权力,这就是美国成为法治国家的关键所在。
2、美国宪法看成是一种政府设计,而且他看到了宪法法律条文的背后反映出的特定的政治理念。每一个社会利益集团特别是弱势团体对这些政治理念的追求,将导致与社会其他阶层的对抗与冲突,而每一次冲突都是对宪法原则的重新界定。它拓展了影响宪法原则的因素,宪法原则不仅是国会中的议员和最高法院的判例所决定的,而且深受这些利益集团斗争的影响,这些利益集团的要求也应成为宪政改革研究者关注的目标。社会各个阶层的共同发展构成一部完整的社会发展史,对一些易被忽略的弱势团体进行研究,给他们在历史发展中的作用定位,也是目前史学研究一项重要任务。权力制衡机制和选举机制也是使宪法处于动态的主要原因。美国政府权力的多层次、多角度划分,使任何一个利益集团都不能单独决策,而为了在选举中获胜,必须尽可能多地考虑社会其他阶层的利益,从而达成一种妥协,并将这种妥协以修正案的形式写入宪法,使美国宪法达成一种动态的平衡。
3、关于公民选举权,联邦宪法先后加进了另外十六条修正案。它们中比较重要的包括:第十三、十四、十五条修正案现定取消奴隶制,宣布黑人为美国公民,给予黑人以投票选举权;第十九条修正案宣布妇女享有选举权;第二十四条修正案取消选举方面的人头税;第二十六条修正案规定公民选举年龄降低至18岁。这些都体现了美国宪法的精神,“绝对的权力会走向绝对的腐败”、“各种团体和个人能通过各种途径发挥自己的力量,在各种力量的斗争中维持一个动态的平衡。”
④ 什么是法治悖论
“合法不合理”或者“合理不合法”的司法判决,这就是法治的悖论。
存在这种悖论,就是因为存在形式主义法治与实质主义法治的分歧。形式主义法治追求形式合法性,以符合实在法为其追求的价值目标。
⑤ 著名的悖论有哪些
悖论一览
1.
理发师悖论(罗素悖论):某村只有一人理发,且该村的人都需要理发,理发师规定,给且只给村中不自己理发的人理发。试问:理发师给不给自己理发?
如果理发师给自己理发,则违背了自己的约定;如果理发师不给自己理发,那么按照他的规定,又应该给自己理发。这样,理发师陷入了两难的境地。
2.
芝诺悖论--阿基里斯与乌龟:公元前5世纪,芝诺用他的无穷、连续以及部分和的知识,引发出以下著名的悖论:他提出让阿基里斯与乌龟之间举行一场赛跑,并让乌龟在阿基里斯前头1000米开始。假定阿基里斯能够跑得比乌龟快10倍。比赛开始,当阿基里斯跑了1000米时,乌龟仍前于他100米;当阿基里斯跑了下一个100米时,乌龟依然前于他10米……所以,阿基里斯永远追不上乌龟。
3.
说谎者悖论:公元前6世纪,古希腊克里特岛的哲学家伊壁门尼德斯有如此断言:“所有克里特人所说的每一句话都是谎话。”
如果这句话是真的,那么也就是说,克里特人伊壁门尼德斯说了一句真话,但是却与他的真话--所有克里特人所说的每一句话都是谎话--相悖;如果这句话不是真的,也就是说克里特人伊壁门尼德斯说了一句谎话,则真话应是:所有克里特人所说的每一句话都是真话,两者又相悖。
所以怎样也难以自圆其说,这就是著名的说谎者悖论。
公元前4世纪,希腊哲学家又提出了一个悖论:“我现在正在说的这句话是真的。”同上,这又是难以自圆其说!
说谎者悖论至今仍困扰着数学家和逻辑学家。说谎者悖论有许多形式。如:我预言:“你下面要讲的话是‘不’,对不对?用‘是’或‘不是’来回答。”
又如,“我的下一句话是错(对)的,我的上一句话是对(错)的”。
4.
跟无限相关的悖论:
{1,2,3,4,5,…}是自然数集:
{1,4,9,16,25,…}是自然数平方的数集。
这两个数集能够很容易构成一一对应,那么,在每个集合中有一样多的元素吗?
5.
伽利略悖论:我们都知道整体大于部分。由线段BC上的点往顶点A连线,每一条线都会与线段DE(D点在AB上,E点在AC上)相交,因此可得DE与BC一样长,与图矛盾。为什么?
6.
预料不到的考试的悖论:一位老师宣布说,在下一星期的五天内(星期一到星期五)的某一天将进行一场考试,但他又告诉班上的同学:“你们无法知道是哪一天,只有到了考试那天的早上八点钟才通知你们下午一点钟考。”
你能说出为什么这场考试无法进行吗?
7.
电梯悖论:在一幢摩天大楼里,有一架电梯是由电脑控制运行的,它每层楼都停,且停留的时间都相同。然而,办公室靠近顶层的王先生说:“每当我要下楼的时候,都要等很久。停下的电梯总是要上楼,很少有下楼的。真奇怪!”李小姐对电梯也很不满意,她在接近底层的办公室上班,每天中午都要到顶楼的餐厅吃饭。她说:“不论我什么时候要上楼,停下来的电梯总是要下楼,很少有上楼的。真让人烦死了!”
这究竟是怎么回事?电梯明明在每层停留的时间都相同,可为什么会让接近顶楼和底层的人等得不耐烦?
8.
硬币悖论:两枚硬币平放在一起,顶上的硬币绕下方的硬币转动半圈,结果硬币中图案的位置与开始时一样;然而,按常理,绕过圆周半圈的硬币的图案应是朝下的才对!你能解释为什么吗?
罗素悖论(理发师悖论)让人们发现了数学这座辉煌大厦的基础部分存在的一条巨大的裂缝。于是,数学家们开始探索数学结论在什么情况下才具有真理性,数学推理在什么情况下才是有效的……,从而产生了一门新的数学分支--数学基础论。
9.
谷堆悖论:显然,1粒谷子不是堆;
如果1粒谷子不是堆,那么2粒谷子也不是堆;
如果2粒谷子不是堆,那么3粒谷子也不是堆;
……
如果99999粒谷子不是堆,那么100000粒谷子也不是堆;
……
10.
宝塔悖论:如果从一砖塔中抽取一块砖,它不会塌;抽两块砖,它也不会塌;……抽第N块砖时,塔塌了。现在换一个地方开始抽砖,同第一次不一样的是,抽第M块砖是,塔塌了。再换一个地方,塔塌时少了L块砖。以此类推,每换一个地方,塔塌时少的砖块数都不尽相同。那么到底抽多少块砖塔才会塌呢?因此,1000000粒谷子不是堆。
⑥ 四个悖论的内容
假定有三列物体,A列静止不动,B列与C列以相等的速度按相反方向运动(专见图1)。当 B1通过属A3,越过两个位置,到达与 A4并列的位置时,由于C列是按相反方向同速运动的,所以 B1在相同的时间里已通过C列的4个位置了(见图2)。B越过C列物体的数目,要比它越过A列物体的数目多一倍。因此,它用来越过C的时间要比它用来越过A的时间长一倍。但是B和C用来走到A的位置的时间却相等。一半的时间等于一倍的时间。因此说一半等于一倍。
A1A2A3A4
B4B3B2B1→
←C1C2C3C4
图 1
A1A2A3A4
B4B3B2B1→
←C1C2C3C4
图 2
这四个悖论的结论是错误的,是形而上学的,但悖论本身在认识史、辩证法史、逻辑史和科学史上却有重要地位。这四个悖论涉及到运动和时间、空间的关系以及极限和无限分割的问题,还接触到运动本身存在连续性与非连续性的矛盾,所以历来受到科学家和哲学家的重视。
⑦ 托克维尔悖论什么意思
初版于156年之前的托克维尔《旧制度与大革命》,2012年在中国意外成为超级畅销书。除了高层领导人王岐山的推荐外,更大的原因是书中内容与当下中国的关联性。“当前中国社会背景复杂和社会矛盾激化的处境,与法国大革命时期有某种相似性”,“当前中国与大革命前的法国都处于最繁荣的时期,物质财富的增加,催促了人们权利意识的觉醒和敏感,对特权、腐败、不公正的容忍度更低。”
托克维尔写道:“一方面是一个民族,其中发财的欲望每时每刻都在膨胀,全民都想发财,每一个老百姓都想发财,但是另一方面是一个政府,他不断的刺激这种新的热情,不断地从中作梗,点燃了又把他扑灭,就这样从两方面促使自己的毁灭,这就是法国大革命。”我们原来的叙事是越穷越革命,越压迫越革命,但是托克维尔发现并非如此,他提出了繁荣与革命、改革与革命的两个悖论。
第一个悖论。革命不是爆发于经济危机,恰恰相反,它是出现在经济繁荣之中。这是对我们革命观的颠覆。在我们通常的理解中,一谈到革命总是和经济危机、人民民不聊生等直接联系起来,中国历代的农民起义的悲惨境况就是典型,由此所形成的革命原因的表象就是,革命总是在经济危机中爆发。而对于法国大革命来说,问题正好相反,它不是爆发于经济危机,恰恰相反,它出现在经济繁荣之中。从18世纪30年代到1770年,法国经济一直是快速而稳定增长,农业收成良好,人口增长,海外贸易也在发展。特别是与广大农民相联系的农业一直处于很好的发展状态。如果说有危机的话,那也是国家的财政危机和周期性的经济波动,而不是整个国家的经济危机。
对于这种悖论,其社会阶级根源是,较之革命时代的英国和美国,革命时代的法国不仅阶级矛盾太尖锐,或者说社会不平等的状况太严重,而且经过启蒙运动的洗礼,社会各界已普遍产生了彻底纠正这种不平等状态的强烈渴望。也正因为如此,在英、美、法三国的革命中,只有法国革命把革命前的制度称为“旧制度”,也只有法国革命才被称为“大革命”。
第二个悖论。“革命的发生并非总因为人们的处境越来越坏。最经常的情况是,一向毫无怨言仿佛若无其事地忍受着最难以忍受的法律的人民,一旦法律的压力减轻,他们就将它猛力抛弃。被革命摧毁的政权几乎总是比它前面的那个政权更好,而且经验告诉我们,对于一个坏政府来说,最危险的时刻通常就是它开始改革的时刻。”即大革命是在人民对苛政“感受最轻的地方爆发的”:“大革命的特殊目的是要到处消灭中世纪残余的制度,但是革命并不是在那些中世纪制度保留得最多、人民受其苛政折磨最深的地方爆发,恰恰相反,革命是在那些人民对此感受最轻的地方爆发的。”
⑧ '十大悖论'有哪些
1.电车难题(The Trolley Problem)
“电车难题”是伦理学领域最为知名的思想实验之一,其内容大致是:一个疯子把五个无辜的人绑在电车轨道上。一辆失控的电车朝他们驶来,并且片刻后就要碾压到他们。幸运的是,你可以拉一个拉杆,让电车开到另一条轨道上。但是还有一个问题,那个疯子在那另一条轨道上也绑了一个人。考虑以上状况,你应该拉拉杆吗?
2.空地上的奶牛(The Cow in the field)
认知论领域的一个最重要的思想实验就是“空地上的奶牛”。它描述的是,一个农民担心自己的获奖的奶牛走丢了。这时送奶工到了农场,他告诉农民不要担心,因为他看到那头奶牛在附件的一块空地上。虽然农民很相信送奶工,但他还是亲自看了看,他看到了熟悉的黑白相间的形状并感到很满意。过了一会,送奶工到那块空地上再次确认。那头奶牛确实在那,但它躲在树林里,而且空地上还有一大张黑白相间的纸缠在树上,很明显,农民把这张纸错当成自己的奶牛了。问题是出现了,虽然奶牛一直都在空地上,但农民说自己知道奶牛在空地上时是否正确?
3.定时炸弹(The Ticking Time Bomb)
如果你关注近几年的政治时事,或者看过动作电影,那么你对于“定时炸弹”思想实验肯定很熟悉。它要求你想象一个炸弹或其他大规模杀伤性武器藏在你的城市中,并且爆炸的倒计时马上就到零了。在羁押中有一个知情者,他知道炸弹的埋藏点。你是否会使用酷刑来获取情报?
4.爱因斯坦的光线(Einstein’s Light Beam)
爱因斯坦著名的狭义相对论是受启于他16岁做的思想实验。在他的自传中,爱因斯坦回忆道他当时幻想在宇宙中追寻一道光线。他推理说,如果他能够以光速在光线旁边运动,那么他应该能够看到光线成为“在空间上不断振荡但停滞不前的电磁场”。对于爱因斯坦,这个思想实验证明了对于这个虚拟的观察者,所有的物理定律应该和一个相对于地球静止的观察者观察到的一样。
5. 特修斯之船(The Ship of Theseus)
最为古老的思想实验之一。最早出自普鲁塔克的记载。它描述的是一艘可以在海上航行几百年的船,归功于不间断的维修和替换部件。只要一块木板腐烂了,它就会被替换掉,以此类推,直到所有的功能部件都不是最开始的那些了。问题是,最终产生的这艘船是否还是原来的那艘特修斯之船,还是一艘完全不同的船?如果不是原来的船,那么在什么时候它不再是原来的船了?哲学家Thomas Hobbes后来对此进来了延伸,如果用特修斯之船上取下来的老部件来重新建造一艘新的船,那么两艘船中哪艘才是真正的特修斯之船?
6.伽利略的重力实验(Galieo's Gravity E)
为了反驳亚里士多德的自由落体速度取决于物体的质量的理论,伽利略构造了一个简单的思想实验。根据亚里士多德的说法,如果一个轻的物体和一个重的物体绑在一起然后从塔上丢下来,那么重的物体下落的速度快,两个物体之间的绳子会被拉直。这时轻的物体对重物会产生一个阻力,使得下落速度变慢。但是,从另一方面来看,两个物体绑在一起以后的质量应该比任意一个单独的物体都大,那么整个系统下落的速度应该最快。这个矛盾证明了亚里士多德的理论是错误的。
7.猴子和打字机(Monkeys and Typewriters)
另一个在流行文化中占了很大分量的思想实验是“无限猴子定理”,也叫做“猴子和打字机”实验。定理的内容是,如果无数多的猴子在无数多的打字机上随机的打字,并持续无限久的时间,那么在某个时候,它们必然会打出莎士比亚的全部著作。猴子和打字机的设想在20世纪初被法国数学家Emile Borel推广,但其基本思想——无数多的人员和无数多的时间能产生任何/所有东西——可以追溯至亚里士多德。
8. 中文房间(The Chinese Room)
“中文房间”最早由美国哲学家John Searle于20世纪80年代初提出。这个实验要求你想象一位只说英语的人身处一个房间之中,这间房间除了门上有一个小窗口以外,全部都是封闭的。他随身带着一本写有中文翻译程序的书。房间里还有足够的稿纸、铅笔和橱柜。写着中文的纸片通过小窗口被送入房间中。根据Searle,房间中的人可以使用他的书来翻译这些文字并用中文回复。虽然他完全不会中文,Searle认为通过这个过程,房间里的人可以让任何房间外的人以为他会说流利的中文。
9. 薛定锷的猫(Schrodinger’s Cat)
薛定锷的猫最早由物理学家薛定锷提出,是量子力学领域中的一个悖论。其内容是:一只猫、一些放射性元素和一瓶毒气一起被封闭在一个盒子里一个小时。在一个小时内,放射性元素衰变的几率为50%。如果衰变,那么一个连接在盖革计数器上的锤子就会被触发,并打碎瓶子,释放毒气,杀死猫。因为这件事会否发生的概率相等,薛定锷认为在盒子被打开前,盒子中的猫被认为是既死又活的。
10.缸中的大脑(Brain in a Vat)
想象有一个疯狂科学家把你的大脑从你的体内取出,放在某种生命维持液体中。大脑上插着电极,电极连到一台能产生图像和感官信号的电脑上。因为你获取的所有关于这个世界的信息都是通过你的大脑来处理的,这台电脑就有能力模拟你的日常体验。如果这确实可能的话,你要如何来证明你周围的世界是真实的,而不是由一台电脑产生的某种模拟环境?
(8)行政法悖论扩展阅读:
悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。
悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。产生悖论的根本原因是把传统逻辑形式化、把形式逻辑普适性绝对化,即把形式逻辑当做思维方式。所有悖论都是因形式逻辑思维方式产生,形式逻辑思维方式发现不了、解释不了、解决不了的逻辑错误。所谓解悖,就是运用对称逻辑思维方式发现、纠正悖论中的逻辑错误。
用对称逻辑解“说谎者悖论”“说谎者悖论”即“我在说谎”这句话中所蕴含的悖论。这个悖论表面上由“我在说谎”和“我说实话”这两个对立的“命题”组成,实际上这两个“命题”并不等价——前一个命题包含思维内容,后一个“命题”只是前一个命题的语言表达式,因此后一个“命题”不是严格意义上的命题。长期以来人们之所以把其看成悖论,是由于把两个“命题”看成等价,即都是思维内容和语言表达式统一的命题。只要把思维的两大层次:命题的思维内容和命题的语言表达式区别开来,“我在说谎”这个悖论即可化解。
悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。
根源:
悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化,即把形式逻辑当作思维方式。
悖论有三种主要形式。
1.一种论断看起来好像肯定错了,但实际上却是对的(佯谬)。
2.一种论断看起来好像肯定是对的,但实际上却错了(似是而非的理论)。
3.一系列推理看起来好像无法打破,可是却导致逻辑上自相矛盾。
古今中外有不少著名的悖论,它们震撼了逻辑和数学的基础,激发了人们求知和精密的思考,吸引了古往今来许多思想家和爱好者的注意力。解决悖论难题需要创造性的思考,悖论的解决又往往可以给人带来全新的观念。根据悖论形成的原因,把它归纳为六种类型,所记都是流传很广的常见悖论。随着现代数学、逻辑学、物理学和天文学的快速发展,又有不少新的悖论大量涌现,人们在孜孜不倦地探索,预计他们的成果将极大地改变我们的思维观念。它们分别是:
自指引发
以下诸例都存在着一个概念自指或自相关的问题:如果从肯定命题入手,就会得到它的否定命题;如果从否定命题入手,就会得到它的肯定命题。由概念自指引发的悖论和引进无限带来的悖论。
谎言者悖论
公元前六世纪,哲学家克利特人艾皮米尼地斯(Epimenides):“所有克利特人都说谎,他们中间的一个诗人这么说。”这就是这个著名悖论的来源。
《圣经》里曾经提到:“有克利特人中的一个本地中先知说:‘克利特人常说谎话,乃是恶兽,又馋又懒’”(《提多书》第一章)。可见这个悖论很出名,但是保罗对于它的逻辑解答并没有兴趣。
“我在说谎”
如果他在说谎,那么“我在说谎”就是一个谎,因此他说的是实话;但是如果这是实话,他又在说谎。矛盾不可避免。
⑨ '十大悖论'有哪些
1\说谎者悖论
一个克里特人说:“我说这句话时正在说慌。”然后这个克里特人问听众他上面说的是真话还是假话?这个悖论出自公元前六世纪希腊的克里特人伊壁孟德,使得希腊人大伤脑筋,连西方的圣经《新约》也引用过这一悖论。
对克里特人“我说这句话时正在说慌”不可判其真亦不可判其伪。
2\柏拉图与苏格拉底悖论
柏拉图调侃他的老师:“苏格拉底老师下面的话是假话。”
苏格拉底回答说:“柏拉图上面的话是对的。”
不论假设苏格拉底的话是真是假,都会引起矛盾。
3\鸡蛋的悖论
先有鸡还是先有蛋?
4\书名的悖论
美国数学家缪灵写了一部标题为《这本书的书名是什么》的书,问:缪灵的这本书的书名是什么?
5\印度父女悖论
女儿在卡片上写道:“今日下午三时之前,您将写一个‘不’字在此卡片上。”随即女儿要求父亲判断她在卡片上写的事是否会发生;若判断会发生,则在卡片上写“是”,否则写“不”。问:父亲是写“是”还是写“不”?
6\蠕虫悖论
一只蠕虫从一米长的橡皮绳的一端以每秒1厘米的速度爬向另一端,橡皮绳同时均匀地以每秒1米的速度向同方向延伸,蠕虫会爬到另一端吗?蠕虫每前进1厘米,同时绳子的另一端却拉远1米,近不抵疏,怕是永远爬不到头了。
现算算看:
第1 秒,蠕虫爬了绳子的1/100(意为100分之1,下同),
第2 秒,蠕虫爬了绳子的1/200,
---------,
第N秒,蠕虫爬了绳子的1/N×100,
前2的K次方秒,蠕虫爬的总路程占绳子全长的比例为
1/100(1+1/2+1/3+-----+1/2的K次方)
而
1+1/2+1/3+-----+1/2的K次方
=(1+1/2)+(1/3+1/4)+(1/5+1/6+1/7+1/8)+-----
+(1/<2的K-1次方+1>+1/<2的K-1方+2>+-----+1/2的K次方)>1+1/2+(1/4+1/4)+(1/8+1/8+1/8+1/8)+-----(1/2的K次方+1/2的K次方+----+1/2的K次方)
———————————∨————————
共有2的K-1次方项
=1+1/2+1/2+-----+1/2=1+K/2
———∨—————
共有2的K次方项
当K=198时,1+K/2=100,于是1/100(1+1/2+1/4+----+1/2的198次方)>1
所以不超过2 的198次方秒,蠕虫爬到了绳子的另一端。
这一悖论是直觉骗人所致。(注:我没有书写数学符号的工具,所以这里的“/”是指分号,2的K次方是指2 的K 次方幂,如2的3次方是指2 的3 次幂等于8)
7\龟兔赛跑悖论
龟对兔说:“你不要想追上我,我现在在你的前方1米,虽然你的速度是我的百倍,但等你追到我现在的地点时,我又向前爬了1厘米到C1点,等你追到C1点时,我已爬到距你1/100厘米的C2点,如此下去,你总在Cn点,我却在你的前方Cn+1点。”兔子当然不服,可又说不过乌龟。实际上比赛起来,用不了1秒钟,兔子已跑在乌龟的前面了。
请读者替兔子辩护一下。(和上面的计算差不多)
8\语言悖论
N是用不超过25个自然字不能定义的最小正整数。
数一数上述N定义中的自然字只有23个,没有超过25个,即用不超过25个自然字定义了N,与N是用不超过25个自然字不能定义相矛盾。
这个悖论的发生是因为,用自然字定义时的字数如何确定无严格界定的标准,另外什么叫“不能定义”也含义模糊。
9\选举悖论
A、B、C竞选,民意测验表明:有2/3的选民愿选A而不愿选B,有2/3的选民愿选B 而不愿选C。于是A说:“根据2/3的选民保我而反B,2/3的选民保B而反C,说明我优于B,B优于C,所以我优于C,从而我最优,应该选我。”C不服说道:“那2/3保A反B之外的1/3选民反A而保C,那2/3保B而反C的选民之外1/3的选民反A而保C,则形成2/3的选民保C而反A,按你的逻辑,我亦优于你,你优于B,我C最优,应选我。”B接着说:“按你们的说法,B优于C,C优于A,则B优于A,即我亦最优,应该选我。”
这种民意测验能说明什么呢?
这个悖论最初出自肯尼思·阿洛之手,肯尼思·阿洛于1972年获诺贝尔经济学奖,1951年他给出民主选举的所谓选举公理,以求得选举的公平合理,避免发生独裁者从中操纵选举的可恶问题。后来,他证明出一条定理,指出不存在满足阿洛(ARROW)公理的十全十美的民主选举。
10\秃头悖论
一位已经谢顶的老教授与他的学生争论他是否为秃头问题。
教授:我是秃头吗?
学生:您的头顶上已经没有多少头发,确实应该说是。
教授:你秀发稠密,绝对不算秃头,问你,如果你头上脱落了一根头发之后,能说变成了秃头了吗?
学生:我减少一根头发之后,当然不会变成秃头。
教授:好了,总结我们的讨论,得出下面的命题:‘如果一个人不是秃头,那么他减少一根头发仍不是秃头’,你说对吗?
学生:对!
教授:我年轻时代也和你一样一头秀法,当时没有人说我秃头,后来随着年龄的增高,头发一根根减少到今天的样子。但每掉一根头发,根据我们刚才的命题,我都不应该称为秃头,这样经有限次头发的减少,用这一命题有限次,结论是:‘我今天仍不是秃头’。
⑩ 著名的五大悖论
NO.1
说谎者悖论(1iar paradox or Epimenides’ paradox)最古老的语义悖论。公元前6世纪古希腊哲学家伊壁孟德所创的四个悖论之一。是关于“我正在撒谎”的悖论。具体为:如果他的确正在撒谎,那么这句话是真的,所以伊壁孟德不在撤谎,如果他不在撒谎,那么这句话是假的,因而伊壁孟德正在撒谎。
NO.5在中国古代《墨经》中,也有一句十分相似的话:“以言为尽悖,悖,说在其言。”意思是:以为所有的话都是错的,这是错的,因为这本身就是一句话。