社会网络分析法电子版
㈠ 社会网络分析法的目录
1网络和抄关系
关系和袭属性
本书概要
2社会网络分析的发展
社会计量分析和图论
人际结构和派系
网络:全网与局部网
哈佛的突破
3关系数据的处理
关系数据的整理
关系数据的存储
关系数据的选择
4点、线和数据
社群图的图论
个体中心密度和社群中心密度
社区结构和密度
5中心度和中心势
局部中心度和整体中心度
中心势和图的中心
关于绝对密度的题外话
公司网络中的银行中心性
6成分、核与派系
成分、循环和结群
成分的轮廓
派系及其交叉
成分和引文圈
7位置、角色和聚类
点的结构对等性
聚类:聚集和分裂
块模型:CONCOR和BUBT
走向规则结构对等性
连锁与参与
8维度和展示
距离、空间和量纲
主成分和因子
一些非量纲的方法
在网络可视化方面的一些进展
精英,社区和影响力
附录社会网络软件包
参考文献
术语(人名)英汉对照表
㈡ 《社会网络分析方法与实践》epub下载在线阅读,求百度网盘云资源
《社会网络分析》(Maksim Tsvetovat)电子书网盘下载免费在线阅读
链接:
书名:社会网络分析
作者:Maksim Tsvetovat
译者:王薇
豆瓣评分:7.2
出版社:机械工业出版社
出版年份:2013-6-1
页数:177
内容简介:
本书以基于Python的网络分析包NetworkX作为社会网络分析工具,但不是一本NetworkX使用手册。作者将重点放在如何从庞大的社会网络分析学术积累中,挑选最精要与最实用的知识点,以帮助读者形成关于社会网络分析的知识谱系图。全书可以分为四部分。第1章和第2章是基础知识,主要介绍社会网络分析的背景信息与图论基础知识。第3~5章主要介绍如何分析社会网络,分别从个体与群体两个层面,介绍社会网络的主要测量指标与分析方法。其中第3章重点介绍社会网络节点层面的四个核心指标:
作者简介:
maksim tsvetovat是一个跨学科的科学家、软件工程师和爵士音乐家。他从卡内基·梅隆大学获得计算、组织和社会方向的博士学位,专注于社会网络进化、信息和态度扩散、集体智能发生的计算机建模。
㈢ 社会网络分析法与文献计量法的区别与联系
知识图谱可以通过文献计量学方法和社会网络分析法来得到,这两个方法是同一层面,不是包含与被包含关系
㈣ 社会网络分析法的研究方法
社会网络分析抄法是一种社袭会学研究方法,社会学理论认为社会不是由个人而是由网络构成的,网络中包含结点及结点之间的关系,社会网络分析法通过对于网络中关系的分析探讨网络的结构及属性特征,包括网络中的个体属性及网络整体属性,网络个体属性分析包括:点度中心度,接近中心度等;网络的整体属性分析包括小世界效应,小团体研究,凝聚子群等。该方法目前在教育领域应用比较广泛,主要探究信息技术环境下学习者所构成网络的特点,以及在此基础上对于该网络的改进策略。
㈤ 社会网络分析social network analysis
黑龙江大学社会学系
首都师范大学
大连理工大学.
等等
㈥ 社会网络分析法的优缺点
优点:社会网络分析是定性和定量的桥梁,它对大量的图表数据进行定量分析得出定性的结论。
缺点:社会网络分析过于考虑社会网络“联络性”,没有考虑各种“孤立点”,不能保证找到所有的有联络的行动者,由此难以全面把握社会网络的全貌。
社会网络分析是定性和定量的桥梁,它对大量的图表数据进行定量分析得出定性的结论。社会网络分析法所具有的这些优点使得该方法在我国多个领域都得到了广泛的应用。
以下是社会网络分析法的相关介绍:
社会是一个由多种多样的关系构成的巨大网络。视角当然多种多样,既可以像林语堂的小说中描述的那样对关系进行细致的刻画,又可以像黄光国等社会心理学家那样对人情、面子和关系网进行质的描述,更可以用社会网络分析法对关系进行量化的表征,从而揭示关系的结构,解释一定的社会现象。
社会网络分析的意义在于,它可以对各种关系进行精确的量化分析,从而为某种中层理论的构建和实证命题的检验提供量化的工具,甚至可以建立“宏观和微观”之间的桥梁。
以上资料参考网络——社会网络分析法
㈦ 社会网络分析法的介绍
《社会网络分析法》是2007年重庆大学出版社出版的图书,作者是斯科特。社会是一个内由容多种多样的关系构成的巨大网络。如何研究关系?视角当然多种多样,既可以像林语堂的小说中描述的那样对关系进行细致的刻画,又可以像黄光国等社会心理学家那样对人情、面子和关系网进行质的描述,更可以用社会网络分析法对关系进行量化的表征,从而揭示关系的结构,解释一定的社会现象。社会网络分析的意义在于,它可以对各种关系进行精确的量化分析,从而为某种中层理论的构建和实证命题的检验提供量化的工具,甚至可以建立“宏观和微观”之间的桥梁。本书就像一本手册,引导读者进入社会网络分析的研究领域。它既适用于社会网络分析的初学者,也适用于对社会网络分析有所了解的人士。
㈧ 什么是社会网络分析法
社会网络分析方法是由社会学家根据数学方法、图论等发展起来的定量分析方法。
社会网络分析是对社会网络的关系结构以及属性加以分析的一套规范和方法。它又被称为结构分析法(structural analysis)
社会网络分析不仅是对关系和结构加以分析的技术,还是一种理论方法--结构思想。
社会网络分析是社会学领域比较成熟的分析方法,该方法可以解决一些社会学的问题。
社会网络要素:
①行动者,在社会网络中用节点表示;
②关系,在社会网络中用剑线表示,关系的内容可能是友谊、借贷或是沟通,其关系可以是单向或双方,且存在关系强度的差异,关系不同即构成不同的网络
社会网络分析的原理:
关系纽带经常是不对称地相互作用着的,在内容和强度上都有所不同
关系纽带间接或直接地把网络成员连接在一起;故必须在更大的网络结构背景中进行分析
社会纽带结构产生了非随机的网络,因而形成了网络群(network clusters)、网络界限和交叉关联
交叉关联把网络群以及个体联系在一起
不对称的纽带和复杂网络使稀缺资源的分配不平等
网络产生了以获取稀缺资源为目的的合作和竞争行为
社会网络分析方法--数学表达式:
①图论法和矩阵法,这是社会网络分析最基本的方法
②二方关系图和三方关系图
③图的矩阵表达
④反应行动者的关系图。通过网络密度、结点度、割点、桥等指标进行具体测量距离,行动者之间的距离越小,意味着他们之间的联系越密切,交流互动越充分。由此可以了解一个网络中行动者之间的分化与差异
㈨ 《社会网络分析方法与实践》epub下载在线阅读全文,求百度网盘云资源
《社会网络分析方法与实践》()电子书网盘下载免费在线阅读
链接:
书名:社会网络分析方法与实践
豆瓣评分:7.2
作者:
出版社:机械工业出版社
副标题:方法与实践
原作名:Social Network Analysis for Startups
译者:王薇/王成军/王颖/刘璟
出版年:2013-6-1
页数:177
内容简介:
本书以基于Python的网络分析包NetworkX作为社会网络分析工具,但不是一本NetworkX使用手册。作者将重点放在如何从庞大的社会网络分析学术积累中,挑选最精要与最实用的知识点,以帮助读者形成关于社会网络分析的知识谱系图。全书可以分为四部分。第1章和第2章是基础知识,主要介绍社会网络分析的背景信息与图论基础知识。第3~5章主要介绍如何分析社会网络,分别从个体与群体两个层面,介绍社会网络的主要测量指标与分析方法。其中第3章重点介绍社会网络节点层面的四个核心指标:
程度中心性:哪些是明星人物?哪些是边缘者?程度中心性回答类似问题。这是最为人们理解的社会网络测量指标。以微博为例,程度中心性就是粉丝的数量,那些程度中心性高的人就是微博中的明星。
亲近中心性:亲近中心性通过点与其他点的距离来测量。那些在社交网络中经常与人互动、人际关系颇好的人,比如公司中的八卦传播者,往往亲近中心性得分较高。
居间中心性:节点的居间程度,表示一个网络中经过该点最短路径的数量。在网络中,节点的居间程度越大,那么它在节点相互之间的信息传播起到的作用也就越大。在两个社会网络之间的人,比如跨界者,往往拥有较高的居间中心性。
特征向量中心性:那些在社交网络中沉默却拥有极大权力的人物,如《教父》中的主人翁柯里昂。社会网络研究者将他们称为“灰衣主教”。特征向量中心性就是找出他们的办法。基本原理是,一个有着高特征向量中心性的行动者,与他建立连接的很多行动者往往也被其他很多行动者所连接。在社交网络中,有这样一种人,很多明星与其做朋友,即使他沉默不语,也可能是一位重要的人物。
社会网络分析不仅仅在节点层面测量。第4章、第5章介绍如何分析群体。其中,第4章主要介绍社群划分的基础知识:如何将庞大的社会网络划分为小的组块?如何利用社会网络中的结构洞牟利?如何进行三元组普查与分析?例如,如何通过岛屿方法逐步找出推特上埃及革命的成千上万条转发的核心人物?又如,如何评估埃及革命中一个人的信息传播能力?显然,如果你的朋友们相互信任,将比那种一个明星发言,粉丝们单纯收听的星形网络传播能力更强。第5章主要介绍二模网络与多模网络的基础知识。关系还会存在于不同类型的主体之间,比如公司雇佣员工、投资者购买公司股票、人们占有信息与资源等。这些关系称为二模关系。现实生活中的关系往往是二模或多模。比如在微博上,可以通过你的兴趣、地域、使用的标签来为你推荐新的朋友,或者基于你对一些公共事件的看法,将你划分到特定政治群体中,这些都是基于二模或多模网络的分析得出的。
第6章是全书最精彩的部分,关注信息如何传播,初步展示分析动态社会网络发展的建模技巧。一条微博如何从一两个人关注突然成为流行用语?作者在实验中发现,当网络密度接近7%的时候,将从线性增长(每次增加一条连接)转化为病毒式扩散,也就是说,如果转发一条微博、加入一个网络社群等的人数比例达到7%,其他人将会在关键阶段马上跟进。这是一个推动脸谱走出哈佛大学的神奇数字。脸谱一步一步地跃迁,总是遵循一个规则——在一个社群里到达饱和点之后才移入一个更大的社群。作者通过手写Python算法,为读者打开动态社会网络与网络仿真的大门——我们如何用算法来模拟人类社会各类关系的变迁?有了自己亲手实践算法的经验,读者未来使用netlogo等网络仿真软件,将更加得心应手。
对于初学者来说,第4~6章这三章有一定难度,需要同时理解社会科学与编程技巧两方面知识。第7章则简单明了,主要介绍获取网络数据的入门知识。如果希望深入了解,可以阅读作者推荐的相关资源。附录A介绍收集社会网络分析所需数据的传统方法、伦理准则与相关API。附录B介绍如何安装本书涉及的相关软件,如NetworkX、matplotlib等。
总而言之,作为一本技术非常新颖的入门读物,本书通俗易懂,基于Python进行分析使得其灵活性变得更高。可以说,本书令学习者从一开始就具有上手实践的能力,除介绍网络数据获取技巧、网络抽样方法、网络在个体与群体两个层面的基本属性之外,还涉及目前日益热门的网络模拟方法,融合基础理论与算法于一身。简约却不简单,上升空间非常大!无论你是对社会网络感兴趣的大众读者,还是社会网络的专业研究者、开发者,相信本书都会在社会网络的理论与实践两方面给予启发!
作者简介:
maksim tsvetovat是一个跨学科的科学家、软件工程师和爵士音乐家。他从卡内基·梅隆大学获得计算、组织和社会方向的博士学位,专注于社会网络进化、信息和态度扩散、集体智能发生的计算机建模。目前,他在乔治·梅森大学教授社会网络分析。他还是deepmile networks公司的联合创始人之一,该公司聚焦于社交媒体影响的图形化。maksim还教授社会网络分析的管理人员研讨班,包括面向创业公司的“社会网络”和面向决策人员的“理解社交媒体”。
alexander kouznetsov是一名软件设计师和架构师,具有从数据仓库到信号处理的广泛技术背景。他为业界开发了大量的社会网络分析工具,从大规模数据采集到在线分析和演示工具。alex在得克萨斯大学获得数学和计算科学学士学位。